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Abstract—SynFull is a widely employed tool that generates
realistic traffic patterns for the performance evaluation of a
NoC. In this work, we identify the main limitations of SynFull:
high variability and long simulation time and also that these
limitations increase when SynFull is integrated with RTL designs.
SynFull-RTL employs a statistical approach, simulating each
application macro-phase only once and averaging according to its
probability of occurrence and the measured traffic load. SynFull-
RTL obtains higher accuracy than the original version and
reduced variability, with observed 40× reduction in simulation
time and resources. A use-case with ProSMART validates the
results.

Index Terms—SynFull, Verilator.
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I. INTRODUCTION

S IMULATION is very important step to evaluate the perfor-
mance of new designs. The fidelity of the results depends

mainly on the characteristics of the network and the traffic
model used. The more detailed traffic in the model is used,
the higher the accuracy of the results, but also the higher the
load and the simulation time.

SynFull [1] introduces a Markov-chain-based synthetic
model that mimics real application traffic. It is very attractive,
because it allows to feed the simulation with a realistic traffic
pattern in a simple and fast way. SynFull divides the simulation
into different long periods of time, denoted macro-phases,
derived from traces of a real execution of the application.

However, in this paper we identify that SynFull does not
execute all the phases in the proportion found in the real
application. For this reason, the variability of the generated
traffic may be very large and the results of the simulations
become unreliable, since different executions using the same
SynFull model may receive traffic that significantly differs.
This may be remedied by running very long simulations, but
it increases computational requirements.

In this work, we modify SynFull to feed an RTL simula-
tor. Because of its increased simulation requirements, further
enlengthening simulations to mitigate the innate variability
becomes unfeasible. To avoid these problems, we introduce
a novel methodology based on SynFull, denoted SynFull-
RTL, which is both faster and more precise than the origi-
nal implementation. Although the proposed methodology is
not exclusive for RTL simulation, it is particularly relevant
for these models because of their increased simulation cost.

This article was presented at the 2022 IEEE/ACM International Symposium
on Networks-on-Chip and appears as part of the Design & Test special issue.
Digital Object Identifier 10.1109/MDAT.2022.3202996

SynFull-RTL evaluates each macro-phase in isolation, and de-
termines the average latency result according to the theoretical
probability of occurrence of each macro-phase in steady-state
and its measured traffic level.

The methodology introduced in this work provides measure-
ments faster and with high accuracy, leveraging the SynFull
models based on real applications. The main contributions are:

• An integrated model of SynFull with RTL NoC router
models, which allows to quickly evaluate the performance
of the model using realistic traffic.

• An analysis of the main limitations of SynFull in this
environment, mainly the use of a single seed, its high
variability and the long simulation times.

• SynFull-RTL, an evaluation methodology that samples
SynFull macro-phases and averages them according to
their probability of occurrence and their traffic level.

• An evaluation of SynFull-RTL, which shows that it can
provide more accurate results than the original SynFull
approach while requiring 8× to 40× less simulated cycles
and reducing time-to-solution by up to 40×.

II. BACKGROUND

A. Traffic Modelling

Traffic modelling is very relevant for accurate performance
evaluation of NoCs. There are multiple methodologies to
generate traffic, including synthetic models (such as random
uniform or permutations), use of large traces such as Ne-
trace [2] or simulating a whole application, such as gem5
modelling. Traces or whole application simulation provide the
highest accuracy, but they require huge files, large amounts of
memory and long simulation time. [2] presents an interesting
discussion and overview of the limitations of different models.

For the designers, a relevant feature is execution time; that
is, the designers often need to test a new experimental feature
in the NoC and have a hint about its estimated performance. In
these cases, for waiting times is undesirable, because it delays
decisions about new features and possible changes.

B. SynFull

SynFull is a tool designed to facilitate fast and realistic
NoC evaluations. SynFull generates random traffic based on
real applications, without relying on traces or full-system
simulation. SynFull has been used in many relevant research
works, such as [3]–[7].

SynFull divides each application into blocks called macro-
phases, each of them lasting for an interval of 500,000 cycles.

https://doi.org/10.1109/MDAT.2022.3202996
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Fig. 1. State diagram of the macro-phases in the Barnes model. The number
next to each arrow indicates the transition probability.

Each macro-phase models the behavior of an interval of the
application. Each macro-phase has different characteristics,
such as the packet injection rate and the pattern of destinations.

SynFull models define macro-phases as nodes of a Markov
chain. Each model defines a low number (2 to 10 in the
available models) of macro-phase types, obtained from traces
of the actual application. Inside each macro-phase, the model
that defines the traffic is denoted micro-phase, and it also
follows an internal Markov model. The model also defines
the transition probability between macro-phases i and j, pij ,
and the probability of occurrence of each macro-phase i in
steady-state, Pi. In a Markov model, they are related by
Pj =

∑
i(Pi × pij).

Figure 1 depicts the macro-phase structure of the Barnes
model. It comprises 3 macro-phase types, each one with a
different probability of occurrence (P1, P2, and P3). Note
that these probabilities differ largely, with P2 being very
low. Transition probabilities (arrows) indicate how likely is
to change from one macro-phase type to another, after each
interval. The starting macro-phase is always type 1.

A simulation with SynFull injects traffic according to the
current macro-phase type for the complete interval of 500,000
cycles. Then, it randomly changes to another macro-phase,
according to the transition probabilities in the model. Although
SynFull implements a hardcoded random seed, the sequence of
macro-phases simulated is not always the same for each traffic
model. This issue, which is further analyzed in Section III-B,
occurs because the random sequence varies with packet recep-
tion, which in turn depends on the simulated NoC model.

C. ProSMART

ProSMART1 [8] is a fully parametrizable NoC router de-
sign written in SystemVerilog, integrated with a module that
supports multihop bypass. The NoC is configurable with many
state-of-the-art features such as virtual channels, virtual net-
works, hard-built-in QoS, multicast, multihop bypass, different
routing algorithms, and network typologies.

ProSMART allows injected flits to skip multiple routers
in a dimension within a single cycle, resulting in a drastic
latency reduction. The system employs the HPCMax pa-
rameter to define the maximum multihop length; in a 4×4

1https://github.com/amonemi/ProNoC

mesh, HPCMax varies from 1 to 3. This allows to model
both a traditional mesh and one with multihop bypass. The
effectiveness of ProSMART is only evaluated in [8] using
synthetic traffic patterns, and it lacks empirical evaluations
using realistic traffic patterns. This work employs ProSMART
as a use-case to validate the proposed evaluation methodology.

III. SYNFULL-RTL INTEGRATION AND ANALYSIS OF
LIMITATIONS

This section introduces the integration of SynFull with
an RTL NoC model to support realistic RTL simulations. It
follows with an analysis of the main limitations of SynFull.

A. Integration of ProSMART with SynFull

The ProSMART GUI provides a set of automation toolset
that generates a simulation model for any custom-defined
NoC model and also integrates several tools to facilitate
performance evaluation. This section discusses two tools used
for integration with SynFull: Questasim, and Verilator.

1) Questasim: It works directly on RTL code and uses the
DPI functions to work with foreign programming languages
like C++. The C++ module is compiled separately as a shared
binary and the location is passed to Questasim with a flag, so
it can find the binary at simulation time. This tool was used
in the first approach to SynFull and it was decided to keep
the socket communication. The DPI function has two parts,
one is software and another one is RTL code. In software,
receiving packets from the socket is handled and the packets
are mapped on a direct connection to the RTL part of the DPI
function, where we have ports for all the input queues where
each packet is divided into flits.

2) Verilator: It converts the NoC RTL code to an equivalent
cycle-accurate C++ model using Verilator simulator. Then it
allocates three different software-based queues for each NoC’s
endpoint namely as injection, traversal, and ejection queues.
These queues keep the desired traffic packets’ information
such as injection timestamp, the destination node address,
and packet size in flits. The simulation model monitors the
injection queues and feeds a corresponding packet to the NoC
according to injection timestamp and NoC credit availability.
Injected packets are moved to traversal queues and remain
there until their corresponding packets reach their destination.
At ejection time, packets are transferred to ejection queues.
The simulation model collects several statistical information
during the simulation and reports the performance results at
the end of the simulation.

The ProSMART baseline simulation model can be effort-
lessly adopted with any existing traffic generator model such as
Netrace or SynFull libraries. The integration is straightforward,
and it only requires the mapping of injection/ejection functions
from the traffic generator library to the ProSMART software-
based injection/ejection queues.

For the following analysis and results, the version with
Verilator is used, because it allows the execution of multiple
simulations in parallel without license restrictions.
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Fig. 2. Variability observed in the simulation results of 10 million cycles (20
macro-phase iterations) using the original SynFull running the Barnes model.

B. Analysis of SynFull Limitations

This subsection presents some limitations and challenges
that were encountered during the integration of SynFull with
ProSMART. First, it highlights that, even with a single hard-
coded seed, minor differences in the NoC model cause large
differences in observed performance. Next, it analyzes the vari-
ability, confirms that it comes from differences in the macro-
phases executed, and observes that generated traffic may not be
completely representative of the original application. Finally,
it discusses simulation time.

1) Single seed and large variability: SynFull makes use of
a pseudorandom number generator, which relies on a hard-
coded seed value. Having a fixed seed always generates the
same sequence of values for consecutive random generations.
However, we observe that in SynFull this does not guarantee
the same sequence of macro-phases and, thus, an equal or very
similar traffic pattern for each model.

An analysis of the implementation of SynFull reveals that
random calls are employed for macro- and micro-phase tran-
sitions as well as packet generation. Packet generation occurs
both at the start of each macro-phase and in response to packet
reception. The use of different NoC models modifies the delay
of each packet, and in turn the evolution of the pseudorandom
sequence and the transition between macro-phases.

Figure 2 illustrates the impact of this issue with three
executions of Barnes with different values of HPCMax in
ProSMART. It shows packet injection and average flit latency.
Larger HPCMax values allow for higher multihop length and
are expected to reduce latency, which may increase traffic.
However, results in Figure 2b show that load is much higher
with HPCMax = 2 than HPCMax = 1 or HPCMax = 3.
Similarly, Figure 2a shows that apparently HPCMax = 2
obtains the best flit latency. The comparison is erroneous,
because the traffic injected in each case differs significantly.

In conclusion, the traffic presents a large variability in both
the traffic load and average latency between different simu-
lations, and the use of a fixed seed prevents from observing
different outcomes, resulting in erroneous conclusions.

2) Variability and application representativeness: We ex-
plore a modified version of SynFull that accepts a seed value
as a parameter. Figure 3 shows the amount of traffic in several
simulations of FFT and Barnes using 10 different seeds. Each
simulation runs for 10 million cycles (20 macro-phases of
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Fig. 3. Number of packets injected in 10 million cycles using the original
SynFull and two different application models, for different seed values.

500,000 cycles). The large variability observed within a single
seed also occurs for different seed values.

SynFull models comprise different macro-phases, each one
with different micro-phase patterns of traffic injection and
load. The number of macro-phases depends on the application
model; FFT and Barnes contain 5 and 3 different macro-phases
respectively. Figure 4 dissects the amount of traffic injected in
each macro-phase in both applications. Within a macro-phase
the amount of traffic is almost constant, and barely depends
on the multihop distance used in the router model. Error bars
in these figures, which represent one standard deviation, are
barely visible. Similarly, the average latency per macro-phase
presented in Figure 5 is also quite constant.

These analyses confirm that the variability in the application
traffic load observed in Figures 2 and 3 does not come from
micro-phase variability, but it depends on the specific macro-
phases simulated in each case. An analysis of the simulations
confirms that the executions in Figure 3 with a higher injected
load also simulate a higher number of macro-phases with high
load (phase 5 in FFT and phase 2 in Barnes), and vice versa.

Figure 6 shows average flit latency results for three appli-
cations running for 10 million cycles, averaging results from
10 different seeds. The standard deviation is significant, so the
result is not reliable. The high standard deviation is caused by
the high variability of SynFull’s packet injection process.

To guarantee that a simulation corresponds to the steady
state situation, this is, it properly represents the application
from which the model was captured, the observed percentage
of occurrence of each macro-phase should be similar to the
steady-state probability of occurrence of such macro-phase.
However, this clearly does not occur in the different executions
shown in Figure 3. Indeed, in some cases we observed that
a given macro-phase (with low probability of occurrence) is
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Fig. 4. Per macro-phase number of injected packets, for 10 million cycles
(20 macro-phase iterations), averaging results from 10 different seeds.
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Fig. 5. Per macro-phase average flit latency, running for 10 million cycles
(20 macro-phase iterations), averaging results from 10 different seeds.

never executed in certain simulations.
Longer simulations with a higher number of averaged

simulations may be used to increase the traffic fidelity. Figure 7
shows the average number of injected packets for FFT and
Barnes as the number of cycles increases, averaging the result
of 10 different seeds. As expected, the average number of
packets grows proportionally to the simulation length. How-
ever, the observed standard deviation remains very large, even
averaging simulations of 400 million cycles.

Several conclusions can be obtained from the previous anal-
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Fig. 6. Latency Results for 10 million of cycles in ProSMART+SynFull,
averaging 10 different seeds.
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Fig. 7. Number of injected packets for different lengths of a SynFull
simulation, from 5 to 400 million cycles, and resulting variability.

ysis. First, a single simulation may not represent accurately the
behaviour of the application from which the SynFull model
was obtained, because the macro-phases are not executed pro-
portionally to their expected probability of occurrence. Indeed,
some macro-phases may not be executed at all. Second, in
order to accurately model the application, SynFull requires
averaging multiple simulations with long simulation times.

3) Simulation time: RTL designs are more complex and
detailed than the functional models in software simulators such
as BookSim. For this reason, RTL simulations consume more
resources and are slower than high-level software simulations.

The previous analysis suggests that a large number of
simulated cycles are required for convergence, such as 400
million. Running in a typical HPC cluster, we measured an
average 5.4 hours of simulation using SynFull with Booksim.
However, using SynFull integrated with an RTL design like
ProSMART, we measured average simulation times of 39
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hours, 7.2× slower. Besides the increased amount of com-
putation resources, due to their slow execution speed, RTL
simulations may exceed the maximum allowed job run time
in some or all the cluster queues, forcing the use of longer
queues with lower priority and typically more congestion. All
these effects reduce the benefit of SynFull as a mechanism for
fast evaluation of RTL NoC designs with realistic traffic.

IV. SYNFULL-RTL METHODOLOGY

This section introduces SynFull-RTL, which solves the
limitations of SynFull in RTL models identified in Section III.
SynFull-RTL employs the original SynFull models, but exe-
cutes each macro-phase in isolation and averages the results
according to the steady-state probabilities in the model.

Our proposal simulates each macro-phase individually,
avoiding a large variation in packet injection in each simu-
lation. Figures 4 and 5 show that the standard deviation of
average packet injection and average flit latency per macro-
phase can be reduced to negligible values. SynFull-RTL
employs two parameters: First, N represents the number of
different simulations (different seeds) that are averaged per
macro-phase. N = 10 is used in Figures 4 to 7. Second, L
represents the length of each simulated macro-phase in each
simulation, in iterations. Since each iteration corresponds to
a fixed value of 500,000 cycles, L can be also indicated
in cycles. Finally, the number of distinct macro-phases M
depends on the application model. The M × N simulations
can run in parallel, reducing the time-to-solution.

For each simulation i (1 ≤ i ≤ N) corresponding to
macro-phase m (1 ≤ m ≤ M) we obtain the average flit
latency FlitLatim, the average packet latency PktLatim,
and the number of sent packets NumPktim and sent flits
NumFlitsim. The application model provides the probability
of each macro-phase, Pm. From these values, we derive the
average and the standard deviation of the packet and flit
latency in steady state. The following discussion explains how
to calculate packet latency, and the calculation for flit latency
is analogous.

For each macro-phase m, the average and the
standard deviation of the packet latency (AvgPktLatm
and SdevPktLatm) and average number of packets
(AvgNumPktm) are calculated from the results of the N
simulations. To obtain the overall results, we cannot simply
average the results from all the M macro-phases, because they
differ in their probability Pm and their load intensity. Instead,
the value must be calculated using a weighted average, in
which each weight wm represents the overall percentage of
packets that are injected in macro-phases of type m.

A normalized overall number of packets is defined by∑M
m=1(AvgNumPktm × P (m)), which considers the con-

tribution of all the macro-phase types. Therefore, the weight
to be used for each macro-phase is defined in Equation 1:

wm =
AvgNumPktm × P (m)∑M

m=1(AvgNumPktm × P (m))
(1)

With these weights that represent the contribution of each
macro-phase type, the average packet latency can be simply
calculated as:

AvgPktLat =

M∑
m=1

(wm ×AvgPktLatm) (2)

To estimate the accuracy of the mechanism, we also cal-
culate the standard deviation of the latency estimation. The
standard deviation is the root of the variance. The variance of
a linear combination of random variables is given by:

V ar(

M∑
i=1

ai ·Xi) =

N∑
i=1

a2i · V ar(Xi)

+ 2
∑

1≤i<j≤N

ai · aj · Cov(Xi, Xj)

(3)

For independent executions the covariance Cov(Xi, Xj) is
null, so we can estimate:

V arPktLat =

M∑
m=1

w2
m × SdevPktLat2m (4)

And finally we obtain the standard deviation as
SdevPktLat =

√
V arPktLat .

V. EVALUATION

This section presents an evaluation of the accuracy and
validity of the SynFull-RTL model, followed by a use-case
evaluating the latency improvements of the ProSMART router.
Methodology: The modelled network is a 4 × 4 mesh using
DOR and 1 virtual channel, with the ProSMART router [8]
with HPCMax = 1, 2, 3 in all cases. Unless otherwise
noted, the evaluations in this section employ SynFull-RTL with
L = 20 iterations per macro-phase and N = 5 seeds. In order
to quantify the inaccuracy of our statistical methodology2, we
also consider a SynFull-RTL-Ideal model, which considers
L = 400 iterations and N = 20 seeds. Whit these large
parameters, the cycle count is so large that a variation in the
number of seeds does not modify the results in a noticeable
way. Evaluations using the original SynFull average N = 10
different seeds (to obtain similar confidence interval), running
for the specified time.

Plots include the confidence interval for a 95% confidence
level. This interval is proportional to the standard deviation
depicted in previous sections. In particular, it is calculated as
CI = ±Z · s√

N
, with Z = 1.960 for a 95% confidence level,

s the standard deviation and N the number of samples.
SynFull-RTL parameters: Figure 8 analyzes the impact of

the number of averaged seeds N and the number of iterations
L of each macro-phase in SynFull-RTL. The application em-
ployed is Barnes, although other applications behave similarly.
The average latency in Figure 8a hardly depends on the
number of averaged simulations, N . Using N ≥ 5 provides an
error interval within a 1%. In Figure 8b, N = 5 simulations
with different seeds are averaged, but the number of intervals
simulated per macro-phase range from L = 1 to L = 20.
The initialization impact, this is, the error observed when the
number of iterations is low because the network is initially

2The inaccuracy introduced by the model generation is impossible to avoid.
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Fig. 8. Parameter analysis of SynFull-RTL using the Barnes application.

empty, can be appreciated clearly for small values; longer
simulations progressively converge. In this case, a high value
of L is more relevant for accuracy. Using N = 5 seeds and
L = 20 provides average results which differ less than 0.67%
of SynFull-RTL-Ideal.

Original SynFull vs SynFull-RTL: Figure 9 compares the
estimation of SynFull-RTL (using N = 5 and L = 20) with
the original SynFull, with different number of simulated cycles
and N = 10 seeds. SynFull needs a higher number of seeds
to obtain a comparable confidence interval. Four applications
are selected: FFT, Barnes, Blackscholes and Bodytrack.

In the four cases we observe that short simulations pro-
vide incorrect results in SynFull, requiring many hundred of
iterations to get close to the result provided by SynFull-RTL.
The results with short simulations differ by up to 15.8% from
the result provided by SynFull-RTL-Ideal. The bias of the
error depends on the latency of the initial macro-phase 1. In
FFT, Barnes and (to a lesser extent) Bodytrack the latency of
macro-phase 1 is high, and short simulations overestimate the
result because simulations always start there; in Blackscholes
the bias is the opposite, for an analogous reason. Even with
400M simulated cycles, the confidence margin obtained with
SynFull is clearly larger than with SynFull-RTL in all cases.
SynFull-RTL average latency is within a 0.58% of the ideal
value, whereas SynFull values with 400M cycles differ by up
to 3.2%.

Longer SynFull simulations could not be run, because they
exceeded the 2-day time limit in our systems. By contrast,
the different simulations of L = 20 iterations (10M cycles) in
SynFull-RTL can be run in parallel, reducing time-to-solution
by up to 400M/10M = 40×. With these parameters, SynFull-
RTL simulates N · L = 5 · 20 = 100 iterations per macro-
phase (the number of macro-phases ranges from 2 to 10 in
the available models). Compared to the N · 800 = 8000

iterations (in the 400M case) in SynFull, computing resources
are reduced by 8× to 40×, while providing more accurate
results.

Two aspects of Barnes are relevant. First, short simulations
with HPCMax = 2 and HPCMax = 3 present excessive
latency but reduced confidence interval. This occurs because
the first macro-phase has both high probability and latency.
In the “steady-state” execution mode (which ends simulation
prematurely when results converge) this can produce incorrect
results, because only one macro-phase is run. Second, the
latency result with 400M cycles is overestimated, compared to
the result from SynFull-RTL. We found that macro-phase 2 has
a very low probability (P2 = 1.88%) but a significant weight
(w2 = 22.6%) because it injects about 9 times more traffic
than the two others. Additionally, it has the lowest latency,
as seen in Figure 5b. An analysis of our SynFull simulations
shows that it is underrepresented, with less than 1% of the
overall iterations. We attribute this problem to its low transition
probability and the bias towards the result from macro-phase
1 because SynFull always starts from it.

ProSMART evaluation using SynFull-RTL: Finally, Fig-
ure 10 presents SynFull-RTL results of all the available mod-
els, characterizing ProSMART. As expected, the confidence
interval is very narrow. All the applications confirm that
increasing the multihop length is profitable. Additionally, the
use of HPCMax = 3 does not yield as much benefit as
increasing from HPCMax = 1 to 2: In a 4 × 4 mesh, the
occurrence of multihops of length 3 (i.e. from side to side
of the mesh) is less frequent. Overall, average flit latency is
reduced by 11.3% and 14.8% by increasing HPCMax to 2 or
3 respectively.

VI. RELATED WORK

In this work, we use SynFull as a tool to feed an RTL
design. In the process, we detected several limitations related
to simulation time and application representativeness. Similar
problems were detected in [9], where SynFull is used to feed
heterogeneous systems with CPU+GPU. In their case, the
simulation time does not allow to explore all the GPU phases.
Therefore, results do not reflect its higher traffic load. They
modify the macro-phases to balance the relation between the
workloads and the transitions between them, and they also
modify the size of the macro-phases to include more micro-
phases during the execution. To guarantee that all macro-
phases occur, they record and replay the macro-phase original
order. In contrast, our SynFull-RTL approach uses a sampling
solution based on a weighted average that depends on both
steady-state probability and traffic load of each macro-phase,
with minor changes to the SynFull design using. This reduces
the need of a large number of cycles to obtain reliable results.

The original SynFull mechanism [1] already considers
steady-state convergence. Their proposal dynamically analyzes
the convergence of the performance metrics and terminates the
simulation prematurely. However, we have observed particular
cases in which this alternatively instead increases the error of
the result. Our approach relies on the steady-state probabilities
of each macro-phase, derived from the transition probabilities,
and sampled simulation.
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Fig. 9. SynFull (blue) and SynFull-RTL (purple) results for average latency with varying number of simulated cycles (in millions). SynFull-RTL runs each
macro-phase for 10M cycles using N=5 seeds. Each SynFull bar averages results from N=10 seeds.
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Fig. 10. ProSMART average flit latency running the complete set of available models using SynFull-RTL.

Other works focus on the SynFull methodology to capture
the traffic burst in real applications. This is the case of Mock-
tails [10], which employs a similar approach to recreate the
space-time memory access behavior in heterogeneous systems
based on memory IP blocks. This is a very different approach
to the SynFull-RTL methodology.

The methodology in FNoC [11] employs FPGAs to evaluate
router models. While the simulation speed may be higher than
our approach, it requires the development of complex traffic
generation units and is limited by the FPGA resources.

A stochastic methodology for NoC traffic generation is
introduced in [12], including a feedback loop that propagates

delays through the memory hierarchy, absent in SynFull. The
application of our sampling methodology to this approach
could be considered in the future.

VII. CONCLUSIONS

The original methodology in SynFull presents significant
limitations that are analyzed throughout this paper. The gener-
ated traffic has a large variability and it can be not completely
representative of the original application being modelled,
because some macro-phases may be underrepresented or not
executed at all in a given simulation, despite reaching the status
of steady state. To mitigate variability, long execution times
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are required, and this is exacerbated when interfacing with
complex RTL models.

The methodology introduced with SynFull-RTL simulates
each macro-phase in isolation and averages the results ac-
cording to the steady-state probability of occurrence and the
measured traffic. While the methodology can be applied to
traditional functional-level software simulations, it has shown
to be particularly relevant for our RTL modelling approach, in
which a straightforward connection could exceed the typical
simulation times of many compute clusters and delay the
results for many days. Indeed, our methodology not only
reduces the required computing resources by up to 40×, but
also reduces time-to-solution by up to 40×. Furthermore, this
speedup is obtained with increased accuracy: we maintain the
error interval within a 1%, lower than the figure measured with
the original mechanism.
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